(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
odd(S(x)) → even(x)
even(S(x)) → odd(x)
odd(0) → 0
even(0) → S(0)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1.
The certificate found is represented by the following graph.
Start state: 1
Accept states: [2]
Transitions:
1→2[odd_1|0, even_1|0, even_1|1, 0|1, odd_1|1]
1→3[S_1|1]
2→2[S_1|0, 0|0]
3→2[0|1]
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(S(z0)) → even(z0)
odd(0) → 0
even(S(z0)) → odd(z0)
even(0) → S(0)
Tuples:
ODD(S(z0)) → c(EVEN(z0))
ODD(0) → c1
EVEN(S(z0)) → c2(ODD(z0))
EVEN(0) → c3
S tuples:
ODD(S(z0)) → c(EVEN(z0))
ODD(0) → c1
EVEN(S(z0)) → c2(ODD(z0))
EVEN(0) → c3
K tuples:none
Defined Rule Symbols:
odd, even
Defined Pair Symbols:
ODD, EVEN
Compound Symbols:
c, c1, c2, c3
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
EVEN(0) → c3
ODD(0) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(S(z0)) → even(z0)
odd(0) → 0
even(S(z0)) → odd(z0)
even(0) → S(0)
Tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
S tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
K tuples:none
Defined Rule Symbols:
odd, even
Defined Pair Symbols:
ODD, EVEN
Compound Symbols:
c, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
odd(S(z0)) → even(z0)
odd(0) → 0
even(S(z0)) → odd(z0)
even(0) → S(0)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
S tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ODD, EVEN
Compound Symbols:
c, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
We considered the (Usable) Rules:none
And the Tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(EVEN(x1)) = x1
POL(ODD(x1)) = x1
POL(S(x1)) = [1] + x1
POL(c(x1)) = x1
POL(c2(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
S tuples:none
K tuples:
ODD(S(z0)) → c(EVEN(z0))
EVEN(S(z0)) → c2(ODD(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
ODD, EVEN
Compound Symbols:
c, c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)